Scope of Application of 'TRIZ' Principles in The Process of Architectural Design Problem Solving

*Prof. R N Bhattacharya

Abstract

TRIZ is a Russian acronym for "Theory of Inventive Problem Solving" which is a problem-solving methodology developed by Genrich Altshuller and his colleagues in the Soviet Union in the mid-20th century. It deals with the patterns in which creative ideas are generated. TRIZ is a popular application methodology for solving Engineering problems. Architecture is a creative domain and it lies somewhere between Art and Science and a modern architectural creation is dependent to a considerable extent on the contribution of other engineering domains experts. The Researcher has found that there haven't been too many efforts by the architectural community to actively employ these problem-solving techniques propounded by the TRIZ community. Like any other problemsolving processes, Architects are also given a brief or they develop their own based on the initial brief/data/information provided to them by the Client based on which they evolve their own solutions through logical thinking processes after weighing different possibilities, constraints and contradictions. The inventive principles that can be adopted while resolving an Architectural design problem at different phases/levels has been the focus of this Research. Application of TRIZ principles can start at the concept design phase and then gradually move onto other finer applications like individual space design, then interior detailing including furniture/fixture designing and so on. TRIZ has the potential to unshackle the mind of the architects towards more flexible, dynamic and bold decisions. Despite the claim by many architects that architectural design resolution is an intuitive process, the researcher wanted to explore the possibility of the existence of an inherent logic behind design decisions. There are 39 contradictions and 40 inventive principles which creates a matrix that can act as a reference towards providing multiple solution avenues to reach the Ideal End Research (IER).

Keywords: TRIZ, Theory of Inventive Problem Solving, Architecture, Design Problem Solving

*Faculty, Gateway College of Architecture and Design, Sonipat, Haryana

It is important for any scientific/technological development to make the researcher(s) access the repository of the previous works. When it comes to problem solving, it has been found that the researcher or the problem solver has used the language which he/she or a very thin section of his fellow researchers understand. The rest are cut out from the benefit of understanding the process involved. Hence, a generalized pattern towards solving a problem understandable by researchers belonging to various fields has the potential to open up a large panorama of opportunities. It can save a huge amount of intellectual man-hours which involves a large number of trials being conducted over a long period of time. This is where the TRIZ system of problem solving comes in.

TRIZ is a Russian acronym for "Theory of Inventive Problem Solving" which is a problem-solving methodology developed by Genrich Altshuller and his colleagues in the Soviet Union in the mid-20th century. It deals with the patterns in which creative ideas are generated. TRIZ is a popular application methodology primarily for solving Engineering problems. Architecture is a creative domain and it lies somewhere between Art and Science; however, a modern architectural creation is dependent to a considerable extent on the contribution of other engineering domain experts.

The Researcher has found that there haven't been too many efforts by the architectural community to actively employ these problem-solving techniques propounded by the TRIZ community. Like any other problem-solving processes, Architects are also given a brief or they develop their own based on the initial brief/data/information provided to them by the Client based on which they evolve their own solutions through logical thinking processes after weighing different possibilities, constraints and contradictions.

The inventive principles that can be adopted while resolving an Architectural design problem at different phases/levels has been the focus of this Research. Application of TRIZ principles can start at the concept design phase and then gradually move onto other finer applications like individual space design, then interior detailing including furniture/fixture designing and so on. TRIZ has the potential to unshackle the mind of the architects towards more flexible, dynamic and bold decisions.

Despite the claim by many architects that architectural design resolution is an intuitive process, the researcher wanted to explore the possibility of the existence of an inherent logic behind design

decisions. There are 39 contradictions and 40 inventive principles which creates a matrix that can act as a reference towards providing multiple solution avenues to reach the Ideal End Research (IER).

Here, in this paper, the focus will be on the 40 inventive principles and not on the 39 contradictions.

The 40 Inventive Principles can be applied towards solving difficult problems related to apparent contradictions. A seemingly impossible problem may be having an undiscovered contradiction – there are two connected things which perhaps are in conflict. By uncovering them and defining the contradiction the relevant 40 Inventive Principles can guide us to resolve the particular contradiction and help the researcher in finding new or fresh ways of getting what he or she wanted.

The researcher has tried to explore the possibilities of applying these 40 problems solving principles in different architectural design domain situations in a tabular format as shown below. In the format, three things have been mentioned: specific TRIZ principle, a brief description of it and the possible zone/area of application in an Architectural design scenario.

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
1	Segmentation	 Divide the object into independent 	 Modular furniture
		parts.	■ Easy
		 Make an object easy to disassemble. 	connection/disconnection
			of service lines
2	Taking Out	 Separate an interfering part or 	 Separation of hot part (in
		property of an object.	the form of outdoor units)
			of an A.C. or using

SI.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
			barking sound of a dog as
			a burglar alarm.
3	Local Quality	 Change the object structure (or 	 Using very thin solar
		external environment) from uniform	panels in the form of
		to non-uniform.	transparent sheets on
		 Make each part of an object fulfil a 	window panes or
		different and useful function.	structural glazing.
		(Example: hammer with nail puller,	
		pencil with eraser etc.)	
4	Asymmetry	 Change the object shape from 	 Guggenheim Museum in
		symmetrical to asymmetrical.	Bilbao, Spain, designed
		• If an object is asymmetrical, increase	by Frank Gehry, is an apt
		the degree of asymmetry.	example of asymmetrical
			design that brings us
			some vibrancy and creates
			an unusual form which is
			spectacularly different
			from the existing urban
			setting.

SI.	Name of the	Brief Description of the Principle	Suggested Application in	
No.	TRIZ Principle		Comprehensive	
			Architectural Design	
			Resolution Which	
			Includes Services and	
			Structures	
5	Consolidation	 Bring closer or merge identical or 	 Consolidation of services 	
		similar objects.	ducts in the common	
			lobby area in a typical	
			apartment building tower.	
6	Universality	 Make a part or object perform 	Painting a wall with such	
		multiple functions, eliminating the	a paint which can turn it	
		needs for other parts (common	into a projection plane or	
		example: handle of a toothbrush	may also have acoustical	
		containing toothpaste, mulching	and intumescence	
		lawnmower)	properties.	
7	Nested Doll	 Placing one object inside the other 	 Using retractable 	
		and so on	furniture or foldable	
		• Make one part pass into the cavity in	furniture, stackable chairs	
		the other. (Example: extending radio	etc.	
		antenna, zoom lens)	 Foldable staircase fixed 	
			to the wall.	
8	Anti-weight	• To compensate for the weight of an	 Using counterweight for 	
		object, merge it with other objects	elevator systems – energy	
		that provide lift (E.g.: using helium	saving.	
		balloons to support advertising signs)	 Floating structures 	

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
		• To compensate for the weight of an	
		object, make it interact with the	
		environment (E.g.: using buoyancy or	
		aerodynamic or other forces)	
9	Preliminary	• If it will be necessary to do both an	 Using sustainable or
	Anti-action	action with both useful and harmful	renewable energy or
		effects, this action should be replaced	recycled materials are
		with anti-action to control harmful	examples of this TRIZ
		effects (E.g.: prestressing/post-	principle.
		tensioning)	
10	Preliminary	 Perform before it is needed the 	 Pre-engineered buildings,
	Action	required change of an object (either	pre-fabricated structures
		fully or partially)	or ready-mix-concrete are
		E.g.: sterilizing surgical instruments	best examples of this
		in a sealed tray, pre-pasted wall paper	principle.
		etc.	
11	Beforehand	 Prepare emergency means 	 Any kind of back-up or
	cushioning	beforehand to compensate for the	auxiliary systems can be
		relatively low reliability of an object	examples of this
		(E.g.: Back-up parachute)	principle. Diesel
			generator-based power

Gateway International Journal of Innovative Research	
Volume 2, Issue 4, December, 2023, pp 58-73.	

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
			backup systems or any
			type of safety factors.
12	Equipotentiality	• Change the condition of the work in	 Ramps used for
		such a way that it will not require	wheelchair bound people
		lifting or lowering an object.	is a common example.
		E.g.: Equipotentiality means finding	
		ways to avoid this heavy work. For	
		example, a chest of drawers: to get to	
		things at the bottom one doesn't need	
		to take out all of the things on top	
		(and then put them back again).	
13	The other way	• Invert the action used to solve the	• Open plan offices.
	round	problem (E.g.: instead of cooling,	 Windows which are
		object is heated)	openable – tilting and
		 Make movable parts fixed and fixed 	turning facilities.
		parts movable.	
		• Turn the object or the process upside	
		down.	
14	Spheroidality,	 Instead of using rectilinear part, using 	• Using arches or domes for
	curvature	curvilinear parts	strength or distribution of

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
		• Go for rotational than linear	load over a large column-
		movement – using centrifugal	free span.
		forces.(spinning clothes to wringing	 Tensegrity structures
		clothes)	
15	Dynamics	 Allowing the characteristics of an 	 Using polymers with
		object, external environment or a	shape memories.
		process to change to certain optimum	 Using photochromatic
		positions/values.	glasses.
		• (E.g.: adjustable seats, supports etc.)	 Retractable roofing
			systems
16	Partial or	If 100% percent of any action is hard	• Little less example;
	Excessive	to achieve then settling for a little	Optimization of design –
	Actions	more or a little less.	say for HVAC systems –
		• (E.g.: filling petrol in a car – it is not	satisfaction of 80%
		completely full $-a$ little less than the	users.
		maximum capacity is considered the	• Little more example:
		best achievable volume).	overdesigning of beams
			or applying more plaster
			and then removing the
			excess part.

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
17	Another	• To move an object in two or three	 Use of triangulation to
	Dimension	dimensional space.	bring in structural
			stability.
			 Slotted iron systems for
			creating racks.
18	Mechanical	 Cause an object to oscillate or 	• Use of needle or plate
	Vibration	vibrate.	vibrator for removal of
		 Increasing its frequency of vibration, 	porosity of concrete.
		using an object's resonance	 Crack detection system
		frequency or using piezoelectric	using ultrasound.
		vibrators	
		 Using a combination of ultrasonic 	
		and electromagnetic field	
		oscillations.	
19	Periodic Action	 Instead of continuous actions, use 	 Architectural analogy
		periodic or pulsating action (E.g.,	could be use of sensor
		hitting something with a hammer)	based design adjustments
		 If an action is already periodic 	related to daylight or
		change the periodicity – periodic	occupancy.
		magnitude or frequency.	

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
		 Use pauses between impulses to 	
		perform a different action.	
20	Continuity of	• Carry on work continuously; make all	 Use of self-cleaning
	useful action	parts of an object work at full load –	systems like self-
		all the time. (E.g., flywheel or	cleaning filters.
		hydraulic system stores energy when	 Converting circulation
		a vehicle stops so that the motor can	areas or lobbies into
		keep running at optimum power);	usable private spaces
		 Eliminate all idle or intermittent 	when needed.
		actions or work (E. g. printing during	
		the return of a printer cartridge);	
21	Skipping	 Conduct a process or certain stages 	 Laying of roofing
		(e.g., destructible, harmful or	materials at a fast pace.
		hazardous operations) at a high	Like an inflatable roof
		speed. (E.g., cutting at a high speed	stage structure so that an
		to reduce heat generation scope).	enclosed space can be
			quickly created.
22	Blessing in	 Use harmful factors to achieve a 	 Using waste heat to
	Disguise or turn	positive effect (e.g., use waste heat to	generate electricity.

Sl.	Name of the	Brief Description of the Principle	S	Suggested Application in
No.	TRIZ Principle			Comprehensive
				Architectural Design
				Resolution Which
				Includes Services and
				Structures
	lemons into	generate electric power; recycle	•	Completely glazed
	lemonade	waste)		houses like solariums to
		 Eliminate the primary harmful option 		maximize heat gain
		by adding it to another harmful action		during daytime.
		to resolve the problem).		
		 Amplify a harmful action to such a 		
		degree that is no longer harmful.		
23	Feedback	 Introduce feedback to improve a 	•	Automatic flushing for
		process or action (E.g., automatic		cisterns in toilets.
		volume control in an audio system)	-	Involving manufacturers
		• If feedback is already used change its		in the design, tendering
		magnitude or influence (change		and execution stages.
		sensitivity of a thermostat so that it		
		can work more efficiently while		
		cooling)		
24	Intermediary	• Use an intermediary carrier article or	•	The intermediate door
		intermediary process.		made of wire mesh for
		 Merge one object into another (which 		safety and security.
		can be easily removed. e.g., potholder	-	Velcrow based window
		for carrying hot dishes to the table).		screen for sound

Sl.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
			insulation or protecting
			from insects.
25	Self-service	 Make an object serve itself by 	• Earth berm houses.
		performing auxiliary helpful	 Self-levelling concrete.
		functions. (E.g. halogen lamps	 Nano-technology based
		regenerate the filament during usage	self-cleaning cladding
		by redeposition of evaporated	surfaces.
		materials)	 Cogeneration
26	Copying	 Instead of using an unavailable, 	 Artificial turf.
		fragile and expensive object use	 Using satellite imageries
		simpler and inexpensive copies. (e.g.	instead of physical
		conducting virtual seminars instead	surveys.
		of physical ones)	• Using UV rays as a non-
		 Replace an object or process using 	destructive crack
		optical copies.	detection method.
		 If visible optical copies are already 	
		used, move to infrared or UV images.	
		(E.g. make images in infrared to	
		detect heat sources like detecting	
		diseases in crops)	

Gateway International Journal of Innovative Research
<i>Volume 2, Issue 4, December, 2023, pp 58-73.</i>

SI.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
27	Cheap, short-	 Replace an expensive object with 	 Artificial turf.
	living objects	multiple inexpensive objects. (E.g.	 Movable toilets used in
		using paper plates instead of steel	construction sites for
		plates to avoid the time, money and	workers or for temporary
		energy of washing and storing).	shelters.
28	Mechanics	 Replace mechanical means by 	 Electrified switchable or
	Substitution	sensory (optical, acoustical, taste or	privacy glass panes.
		smell)	 Electrical or acoustical
			fence.
29	Pneumatic and	 use gas or liquid parts of an object 	 Hydraulic lifts are apt
	hydraulics	instead of solid parts (e.g., inflatable,	examples.
		filled with liquids, air cushions	
		hydrostatic, hydro reactive etc.)	
30	Flexible shells	 Avoiding seemingly rigid 	 Using flexible shells and
	and thin films	enclosures.	thin films than 3-
			dimensional structures.
31	Porous	 Make an object porous or add 	 Cavity wall construction
	Materials	porous elements (inserts, coatings	 Using AAC bricks
		etc.)	

Sl. No.	Name of the TRIZ Principle	Brief Description of the Principle	Suggested Application in Comprehensive Architectural Design Resolution Which Includes Services and Structures
32	Colour changes	 Changing the colour of an object or its external environment. [using safe lights in a photographic dark room] 	 Using dynamic lighting pattern in a room for providing varying user experience.
33	Homogeneity	 Making objects interacting with given object of the same material (or material with identical properties) [Making the container with the same material as the object contained to avoid chemical reactions.
34	Discarding and recovering	 Making portions of the object go away after the functions have been fulfilled (dissolving or evaporating) Conversely, restoring consumable parts of an object during operation. 	 Using sacrificial formwork for concreting Reusing formwork for concreting like Mivan construction.
35	Parameter changes	 Changing the physical states of an object from e.g. gas, liquid or solid/ changing concentration or consistency/changing the degree of flexibility/changing the temperature. 	 Using liquified silicon sealants for windows or door insulation system. Using liquid plastic as sheet covering or paints for roof insulation.

Sl. No.	Name of the TRIZ Principle	Brief Description of the Principle	Suggested Application in Comprehensive Architectural Design Resolution Which Includes Services and Structures
36	Phase transitions	 Using phenomena occurring during phase transitions (increase of volume or loss/absorption of heat) [expansion of water while turning into ice] 	 Using ice as a base material for gently lowering heavy structures.
37	Thermal Expansion	 Using thermal expansion or contraction of materials [thermostatic effect happens using multiple metals] 	 Shape-memory polymer rivet fasteners as advanced screwing techniques.
38	Strong oxidants	 Replacing common air with oxygen- enriched air. 	 Using ozone-based air for releasing oxygen in air-pollution situations.
39	Inert atmosphere	 Replacing normal environment with inert one. [metal filament in an argon environment] 	 Using argon filled double or triple glazed window systems. Using inert gas environment for Fire safety.

SI.	Name of the	Brief Description of the Principle	Suggested Application in
No.	TRIZ Principle		Comprehensive
			Architectural Design
			Resolution Which
			Includes Services and
			Structures
40	Composite	 Changing from uniform to 	 Use of Fiberglass for
	Materials	composite (multiple) materials	lightweight and flexible
			structures/objects
			 Fibre-reinforced
			concrete.

The examples given above are solutions which have been in use for a long time in the Architectural, construction/interior design industry. However, it is easy to see that applicability of TRIZ based solutions have infinite possibilities depending on how horizons are pushed by bringing in synergy between cutting edge technologies being developed in various fields and their applicability in this specific domain related to Architecture (and may be Urban Design and other related areas). Involving more or more of these principles can change the traditional way of resolving architectural design problems.

References:

Haines-Gadd, Lilly. TRIZ For Dummies (p. 267). Wiley. Kindle Edition.

40 Inventive (Architecture) Principles With Examples: Darrell Mann Systematic Innovation & Conall Ó Catháin Senior Lecturer, School of Architecture, Queen's University Belfast, BT7 1NN, UK

Possibilities of applying TRIZ methodology elements (the 40 Inventive Principles) in the process of architectural design by Igor Labuda, World Conference: TRIZ FUTURE, TF 2011-2014

Bowl Knowledge: Module: Creativity, Innovation and Design Thinking – TRIZ by Prof. Himanshu Shukla